66 research outputs found

    Barkhausen Noise and Critical Scaling in the Demagnetization Curve

    Full text link
    The demagnetization curve, or initial magnetization curve, is studied by examining the embedded Barkhausen noise using the non-equilibrium, zero temperature random-field Ising model. The demagnetization curve is found to reflect the critical point seen as the system's disorder is changed. Critical scaling is found for avalanche sizes and the size and number of spanning avalanches. The critical exponents are derived from those related to the saturation loop and subloops. Finally, the behavior in the presence of long range demagnetizing fields is discussed. Results are presented for simulations of up to one million spins.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Weirdest Martensite: Smectic Liquid Crystal Microstructure And Weyl-poincaré Invariance

    Get PDF
    Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations. © 2016 American Physical Society.1161

    From Damage Percolation to Crack Nucleation Through Finite Size Criticality

    Get PDF
    We present a unified theory of fracture in disordered brittle media that reconciles apparently conflicting results reported in the literature. Our renormalization group based approach yields a phase diagram in which the percolation fixed point, expected for infinite disorder, is unstable for finite disorder and flows to a zero-disorder nucleation-type fixed point, thus showing that fracture has a mixed first order and continuous character. In a region of intermediate disorder and finite system sizes, we predict a crossover with mean-field avalanche scaling. We discuss intriguing connections to other phenomena where critical scaling is only observed in finite size systems and disappears in the thermodynamic limit

    Smectic blue phases: layered systems with high intrinsic curvature

    Full text link
    We report on a construction for smectic blue phases, which have quasi-long range smectic translational order as well as three dimensional crystalline order. Our proposed structures fill space by adding layers on top of a minimal surface, introducing either curvature or edge defects as necessary. We find that for the right range of material parameters, the favorable saddle-splay energy of these structures can stabilize them against uniform layered structures. We also consider the nature of curvature frustration between mean curvature and saddle-splay.Comment: 15 pages, 11 figure

    Rayleigh loops in the random-field Ising model on the Bethe lattice

    Get PDF
    We analyze the demagnetization properties of the random-field Ising model on the Bethe lattice focusing on the beahvior near the disorder induced phase transition. We derive an exact recursion relation for the magnetization and integrate it numerically. Our analysis shows that demagnetization is possible only in the continous high disorder phase, where at low field the loops are described by the Rayleigh law. In the low disorder phase, the saturation loop displays a discontinuity which is reflected by a non vanishing magnetization m_\infty after a series of nested loops. In this case, at low fields the loops are not symmetric and the Rayleigh law does not hold.Comment: 8pages, 6 figure

    Average shape of fluctuations for subdiffusive walks

    Full text link
    We study the average shape of fluctuations for subdiffusive processes, i.e., processes with uncorrelated increments but where the waiting time distribution has a broad power-law tail. This shape is obtained analytically by means of a fractional diffusion approach. We find that, in contrast with processes where the waiting time between increments has finite variance, the fluctuation shape is no longer a semicircle: it tends to adopt a table-like form as the subdiffusive character of the process increases. The theoretical predictions are compared with numerical simulation results.Comment: 4 pages, 6 figures. Accepted for publication Phys. Rev. E (Replaced for the latest version, in press.) Section II rewritte

    The nature of slow dynamics in a minimal model of frustration-limited domains

    Full text link
    We present simulation results for the dynamics of a schematic model based on the frustration-limited domain picture of glass-forming liquids. These results are compared with approximate theoretical predictions analogous to those commonly used for supercooled liquid dynamics. Although model relaxation times increase by several orders of magnitude in a non-Arrhenius manner as a microphase separation transition is approached, the slow relaxation is in many ways dissimilar to that of a liquid. In particular, structural relaxation is nearly exponential in time at each wave vector, indicating that the mode coupling effects dominating liquid relaxation are comparatively weak within this model. Relaxation properties of the model are instead well reproduced by the simplest dynamical extension of a static Hartree approximation. This approach is qualitatively accurate even for temperatures at which the mode coupling approximation predicts loss of ergodicity. These results suggest that the thermodynamically disordered phase of such a minimal model poorly caricatures the slow dynamics of a liquid near its glass transition
    • …
    corecore